首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6933篇
  免费   917篇
  国内免费   485篇
  2024年   6篇
  2023年   172篇
  2022年   129篇
  2021年   230篇
  2020年   339篇
  2019年   436篇
  2018年   393篇
  2017年   402篇
  2016年   369篇
  2015年   340篇
  2014年   390篇
  2013年   651篇
  2012年   254篇
  2011年   388篇
  2010年   290篇
  2009年   430篇
  2008年   437篇
  2007年   377篇
  2006年   355篇
  2005年   263篇
  2004年   291篇
  2003年   203篇
  2002年   167篇
  2001年   156篇
  2000年   121篇
  1999年   99篇
  1998年   97篇
  1997年   69篇
  1996年   62篇
  1995年   79篇
  1994年   63篇
  1993年   73篇
  1992年   67篇
  1991年   33篇
  1990年   24篇
  1989年   11篇
  1988年   11篇
  1987年   8篇
  1986年   13篇
  1985年   5篇
  1984年   7篇
  1983年   5篇
  1982年   7篇
  1981年   3篇
  1980年   3篇
  1979年   5篇
  1976年   1篇
  1973年   1篇
排序方式: 共有8335条查询结果,搜索用时 31 毫秒
71.
Casein was conjugated with dextran and galactomannan in a controlled dry state at a relative humidity of 79% and at 60°C for 24 hr. The covalent attachment of polysaccharides to casein was confirmed by SDS-PAGE and HPLC. The emulsifying activity of the casein-dextran and casein-galactomannan conjugates was 1.5 times higher than that of casein. The emulsion stability of the casein-dextran and casein-galactomannan conjugates was 10 times higher than that of casein. The improvement in these emulsifying properties reached a steady state when the conjugation of casein with polysaccharide was done for 24 hr in a controlled dry state, suggesting the rapid formation of conjugates through a Maillard reaction in the case of casein. Compared to commercial emulsifiers, the casein-polysaccharide conjugates showed better emulsifying properties in acidic and high-salt concentration systems.  相似文献   
72.
73.
A new model, CCBATCH, comprehensively couples microbially catalyzed reactions to aqueous geochemistry. The effect of aqueous speciation on biodegradation reactions and the effect of biological reactions on the concentration of chemical species (e.g. H2CO3, NH 4 + , O2) are explicitly included in CCBATCH, allowing systematic investigation of kinetically controlled biological reactions. Bulk-phase chemical speciation reactions including acid/base and complexation are modeled as thermodynamically controlled, while biological reactions are modeled as kinetically controlled. A dual-Monod kinetic formulation for biological degradation reactions is coupled with stoichiometry for the degradation reaction to predict the rate of change of all biological and chemical species affected by the biological reactions. The capability of CCBATCH to capture pH and speciation effects on biological reactions is demonstrated by a series of modeling examples for the citrate/Fe(III) system. pH controls the concentration of potentially biologically available forms of citrate. When the percentage of the degradable substrate is low due to complexation or acid/base speciation, degradation rates may be slow despite high concentrations of substrate Complexation reactions that sequester substratein non-degradable forms may prevent degradation or stopdegradation reactions prior to complete substrate utilization. The capability of CCBATCH to couple aqueous speciation changes to biodegradation reaction kinetics and stoichiometry allows prediction of these key behaviors in mixed metal/chelate systems.  相似文献   
74.
Bioclimate envelope models are often used to predict changes in species distribution arising from changes in climate. These models are typically based on observed correlations between current species distribution and climate data. One limitation of this basic approach is that the relationship modelled is assumed to be constant in space; the analysis is global with the relationship assumed to be spatially stationary. Here, it is shown that by using a local regression analysis, which allows the relationship under study to vary in space, rather than conventional global regression analysis it is possible to increase the accuracy of bioclimate envelope modelling. This is demonstrated for the distribution of Spotted Meddick in Great Britain using data relating to three time periods, including predictions for the 2080s based on two climate change scenarios. Species distribution and climate data were available for two of the time periods studied and this allowed comparison of bioclimate envelope model outputs derived using the local and global regression analyses. For both time periods, the area under the receiver operating characteristics curve derived from the analysis based on local statistics was significantly higher than that from the conventional global analysis; the curve comparisons were also undertaken with an approach that recognised the dependent nature of the data sets compared. Marked differences in the future distribution of the species predicted from the local and global based analyses were evident and highlight a need for further consideration of local issues in modelling ecological variables.  相似文献   
75.
76.
77.
The phenomena related to brain function occur as the interplay of various modules at different spatial and temporal scales. Particularly, the integration of the dynamical behavior of cells within the complex brain topology reveals a heterogeneous multi-scale problem, which has, to date, mainly been addressed by methods of statistical physics such as mean-field approximations. In contrast, the present study introduces an abstract mathematical model of a deterministic nature that provides a robust integral transformation of the microscopic activities into macroscopic spatiotemporal patterns. The existence of the transformation operator is guaranteed by the convergence of a repetitive patching of the network domain with its fundamental domains that express the local topologies of the tissue. Depending on the choice of the local connectivity function, this framework represents a computationally efficient generalization of the classical Kirchhoff’s, Hebbian, and Hopfield’s approaches. The capabilities of this multi-scale method have been evaluated within the structure of the dorsal striatum of rats, a brain region with major involvement in motor and cognitive information processing. Numerical simulations suggest the formation of characteristic spatiotemporal patterns due to the activation of cholinergic interneurons.  相似文献   
78.
《植物生态学报》2013,22(3):277
A scientific workflow system is designed specifically to organize, manage and execute a series of research steps, or a workflow, in a given runtime environment. The vision for scientific workflow systems is that the scientists around the world can collaborate on designing global-scaled experiments, sharing the data sets, experimental processes, and results on an easy-to-use platform. Each scientist can create and execute their own workflows and view results in real-time, and then subsequently share and reuse workflows among other scientists. Two case studies, using the Kepler system and BioVeL, are introduced in this paper. Ecological niche modeling process, which is a specialized form of scientific workflow system included in both Kepler system and BioVeL, was used to describe and discuss the features, developmental trends, and problems of scientific workflows.  相似文献   
79.
Use of lignocellulosic biomass as a second generation feedstock in the biofuels industry is a pressing challenge. Among other difficulties in using lignocellulosic biomass, one major challenge is the optimal utilization of both 6-carbon (glucose) and 5-carbon (xylose) sugars by industrial microorganisms. Most industrial microorganisms preferentially utilize glucose over xylose owing to the regulatory phenomenon of carbon catabolite repression (CCR). Microorganisms that can co-utilize glucose and xylose are of considerable interest to the biofuels industry due to their ability to simplify the fermentation processes. However, elimination of CCR in microorganisms is challenging due to the multiple coordinating mechanisms involved. We report a novel algorithm, SIMUP, which finds metabolic engineering strategies to force co-utilization of two sugars, without targeting the regulatory pathways of CCR. Mutants of Escherichia coli based on SIMUP algorithm showed predicted growth phenotypes and co-utilized glucose and xylose; however, consumed the sugars slower than the wild-type. Some solutions identified by the algorithm were based on stoichiometric imbalance and were not obvious from the metabolic network topology. Furthermore, sequencing studies on the genes involved in CCR showed that the mechanism for co-utilization of the sugars could be different from previously known mechanisms.  相似文献   
80.
Genetically modified Saccharomyces cerevisiae strain (YPB-G) which secretes a bifunctional fusion protein that contains both Bacillus subtilis -amylase and Aspergillus awamori glucoamylase activities was used for the direct conversion of starch into ethanol. Starch was either supplied initially to different nutrient media or added instantaneously to the reactor at various discrete time instants (pulse feeding). Stoichiometric modeling was used to investigate the effects of initial substrate concentration and growth rate of the recombinant yeast culture on ethanol production. Reaction stoichiometries describing both the anabolism and catabolism of the microorganism were used as an input to flux balance analysis (FBA), the preferred metabolic modeling approach since the constructed stoichiometric network was underdetermined. Experiments for batch and fed-batch systems at different substrate concentrations were analyzed theoretically in terms of flux distributions using ethanol production rate as the maximization criteria. Calculated ethanol rates were in agreement with experimental measurements, suggesting that this recombinant microorganism is sufficiently evolved to optimize its ethanol production. The function of the main pathways of yeast metabolism (PPP, EMP, TCA) are discussed together with the node analyses of glucose-6-P and pyruvate branch points. Theoretical node analysis revealed that if the split ratio in G6P branch point is changed by genetic manipulations, the ethanol yield would be affected considerably.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号